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We prove a certain duality relation for orthogonal polynomials defined on a
finite set. The result is used in a direct proof of the equivalence of two different
ways (using particles or holes) of computing the correlation functions of a
discrete orthogonal polynomial ensemble.
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0. INTRODUCTION

This note is about a certain duality of orthogonal polynomials defined on a
finite set. If the weights of two systems of orthogonal polynomials are
related in a certain way, then the values of the nth polynomial of the first
system at the points of the set equal, up to a simple factor, the correspond-
ing values of the (M−n)th polynomial of the second system, where M is
the cardinality of the underlying finite set.
We formulate the exact result and prove it in Section 1.
In Section 2 we explain the motivation which led to the result. We

compare two different ways to compute probabilistic quantities called cor-
relation functions in a certain model. The model is a discrete analog of the
orthogonal polynomial ensembles which appeared for the first time in the
random matrix theory, see, e.g., refs. 1–5. Discrete orthogonal polynomial
ensembles were discussed in refs. 6–11. The two different ways correspond
to descriptions of an ensemble in terms of particles or in terms of holes. The
relation that we prove shows explicitly how the particle-hole duality trans-
forms the underlying orthogonal polynomials.



The particle-hole duality in orthogonal polynomial ensembles comes
up naturally in tiling models (ref. 11, Section 4) and in representation
theoretic models (ref. 8, Sections 5 and 11). Our result applies directly in
both cases.
In Section 3 we consider two examples when the orthogonal polyno-

mials are classical (Krawtchouk and Hahn polynomials). In these cases the
duality provides relations between similar polynomials with different sets of
parameters. The relations are also easily verified using known explicit
formulas for the polynomials.
I am very grateful to Grigori Olshanski for numerous discussions.

I also want to thank Tom Koornwinder for providing me with his compu-
tation regarding the Hahn polynomials, see Section 3, and Vyacheslav
Spiridonov for referring me to ref. 12.

1. DUALITY

Theorem 1. Let

X={x0, x1,..., xM} … R

be a finite set of distinct points on the real line, u(x) and v(x) be two posi-
tive functions on X such that

u(xk) v(xk)=
1

<i ] k (xk−xi)2
, k=0, 1,..., M, (1)

and P0, P1,..., PM and Q0, Q1,..., QM be the systems of orthogonal poly-
nomials on X with respect to the weights u(x) and v(x), respectively,

deg Pi=deg Qi=i,

C
M

k=0
Pi(xk) Pj(xk) u(xk)=dij pi, C

M

k=0
Qi(xk) Qj(xk) v(xk)=dijqi,

Pi=aix i+lower terms, Qi=bix i+lower terms.

Assume that the polynomials are normalized so that bi=pM−i/aM−i
for all i=0, 1,..., M. Then

Pi(x)`u(x)=E(x) QM−i(x)`v(x), x ¥X,

aibM−i=pi=qM−i, i=0, 1,..., M,
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where

E(xk)=sgn D
l ] k
(xk−xl), k=0, 1,..., M.

Remark. After this paper was completed, I learned from V. P.
Spiridonov that a similar result had been proved earlier in ref. 12. The
proof and motivation of ref. 12 are, however, rather different.

Proof. Let us start with one system of polynomials, say, {Pi}, and
define a sequence of functions {Q̃i} on X by the equalities

Q̃i(xk)=E(xk) PM−i(xk)=
u(xk)
v(xk)

=D
i ] k
(xk−xi) ·PM−i(xk) u(xk).

Then

C
M

k=0
Q̃i(xk) Q̃j(xk) v(xk)=C

M

k=0
PM−i(xk) PM−j(xk) u(xk)=dij pM−i,

so the functions {Q̃i}
M
i=0 are pairwise orthogonal with respect to the weight

v(x), and qi=||Q̃i ||
2
v=pM−i.

Consider the interpolation polynomial Qi(x) of degree M such that
Qi(x)=Q̃i(x) for all x ¥X. We have (the hat means that the corresponding
factor is omitted)

Qi(x)= C
M

m=0
Q̃i(xm)

(x−x0) · · · (x−xm5) · · · (x−xM)

(xm−x0) · · · (xm−xm5) · · · (xm−xM)

= C
M

m=0
PM−i(xm) u(xm) · (x−x0) · · · (x−xm5) · · · (x−xM).

The coefficient of xn of such polynomial equals

(−1)M−n C
M

m=0
PM−i(xm) u(xm) eM−n(x0,..., xm5,..., xM)

where es are the elementary symmetric functions:

es(y0, y1,...)= C
0 [ i1 < i2 < · · · < is

yi1 yi2 · · · yis .
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Denote es(x0,..., xM) by Es. Note that E0=1 by definition. An application
of the inclusion–exclusion principle shows that

es(x0,..., xm5,..., xM)=Es−xmEs−1+x
2
mEs−2− · · ·+(−1)

s x sm.

Then the coefficient of xn in Qi(x) equals

(−1)M−n C
M

m=0
PM−i(xm) u(xm)(EM−n−xmEM−n−1+·· ·+(−1)M−n x

M−n
m )

=(−1)M−n EM−nOPM−i, 1P+(−1)M−n−1 EM−n−1OPM−i, xP

+·· ·+OPM−i, xM−nP.

But the orthogonality of Pj’s implies that OPM−i, x rP=0 for r <M−i, and

OPM−i, xM−iP=
||PM−i ||2

aM−i
=
pM−i
aM−i

.

This immediately implies that Qi is a polynomial of degree i with the
leading coefficient bi=pM−i/aM−i. L

2. PROBABILISTIC INTERPRETATION

Recall that X={x0,..., xM} is a finite subset of the real line.
For any m=1,..., M, denote by X (m) the set of all subsets of X with m

points:

X (m)={{xi1 ,..., xim} | 0 [ i1 < · · · < im [M}.

For any positive function w(x) on X denote by P (m)
w the probability

measure on X (m) defined by the formula:

P (m)
w {xi1 ,..., xim}=const D

1 [ k < l [ m
(xik −xil )

2 ·D
m

k=1
w(xik ).

Also denote by Pa (m)w the probability measure on X (m) defined by the
relation:

Pa (m)w (A)=P (M−m+1)
w (X0A), A ¥X (m).

The next claim was essentially proved in ref. 8.

Proposition 2. Let u(x) and v(x) be two positive functions on X
satisfying (1). Then P (m)

u =Pa (M−m+1)v for any m=1,..., M.
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Proof. For arbitrary finite sets B and C we will abbreviate

P(B)=± D
x, y ¥ B
x ] y

(x−y), P(B, C)= D
x ¥ B, y ¥ C

(x−y).

The sign of P(B) is inessential.
Take A={xi1 ,..., xim} ¥X

(m). We have

P (m)
u (A)=const D

1 [ k < l [ m
(xik −xil )

2 ·D
m

k=1
u(xik )=const ·P

2(A) ·D
x ¥ A
u(x).

Further,

P(A)=±P(X0A) ·P2(A)P(A, X0A) ·
1

P(A)P(X0A)P(A, X0A)
.

But P(A)P(X0A)P(A, X0A)=P(X)=const, and

P2(A)P(A, X0A)=± D
x ¥ A

1 D
y ¥X
y ] x

(y−x)2 .

Hence, using (1), we get

P2(A) ·D
x ¥ A
u(x)=const ·P2(X0A)1D

x ¥ A
v(x)2

−1

=const ·P2(X0A) ·
<x ¥X0A v(x)
<x ¥X v(x)

=constŒ ·P2(X0A) · D
x ¥X0A

v(x),

where const Œ=const · (<x ¥X v(x))−1. Thus, P
(m)
u and Pa (M−m+1)v differ by

a multiplicative constant. Since both P (m)
u and Pa (M−m+1)v are probability

measures, they must coincide. L

Let m be an arbitrary probability measure on the set of all subsets
of X. Note that any probability measure on X (m) can be trivially extended
to a measure on the set of all subsets of X.
For any n=1, 2,..., M, we define the nth correlation function of m

rn( · | m): X (n)Q R \ 0
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by the formula

rn(A | m)= C
B ‡ A
m(B).

In other words, rn(A | m) is the probability (with respect to m) that the
random set B contains a fixed set A ¥X (n).
Below we use the notation of Theorem 1 for the orthogonal polyno-

mials associated with the weights u(x) and v(x).

Proposition 3. For any m=1,..., M, the correlation functions of
P (m)
u have the form

rn({xi1 ,..., xin} | P
(m)
u )=det[K

(m)
u (xik , xil )]k, l=1,..., n,

where

K (m)u (x, y)=`u(x) u(y) C
m−1

i=0

Pi(x) Pi(y)
pi

.

Proof. A standard argument from the random matrix theory, see,
e.g., ref. 1 and ref. 4, Section 5.2. L

Note that if n > m then the nth correlation function of P (m)
u vanishes

identically. Indeed, all sets with more than m points have measure zero
with respect to P (m)

u . Another way to see the vanishing is to observe that
the matrix ||K(m)u (xi, xj)||i, j=0,..., M has rank m. Thus, its n×n minors
expressing rn( · | P

(m)
u ) must vanish if n > m.

Similarly, for any m=1,..., M, the correlation functions of P (m)
v have

the form

rn({xi1 ,..., xin} | P
(m)
v )=det[K

(m)
v (xik , xil )]k, l=1,..., n,

where

K (m)v (x, y)=`v(x) v(y) C
m−1

i=0

Qi(x) Qi(y)
qi

.

The determinantal formulas for the correlation functions above imply
that P (m)

u and P (m)
v belong to the class of determinantal point processes, see

refs. 13; 14, Section 5.4; 15, Appendix; and 16 for a general discussion of
such processes.
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Proposition 4. For any m=1,..., M, the correlation functions of
Pa (m)u have the form

rn({xi1 ,..., xin} | P
a (m)
u )=det[K̄

(m)
u (xik , xil )]k, l=1,..., n,

where

K̄ (m)u (x, y)=dxy−K
(m)
u (x, y).

Here dxy is the Kronecker delta.

Proof. By the definition of Pa (m)u , we have

rn(A | Pa
(m)
u )= C

B ‡ A
P (m)
u (X0B)= C

C …X
C 5 A=”

P (m)
u (C).

The inclusion–exclusion principle, see, e.g., ref. 17, Section 2.1, gives

C
C …X

C 5 A=”

P (m)
u (C)= C

D … A
(−1) |D| r|D|(D | P

(m)
u ).

By Proposition 3, the expression on the right-hand side is equal to the
alternating sum of all diagonal minors of the matrix ||K (m)u (x, y)||x, y ¥ A. By
linear algebra, this is equal to det[dxy−K

(m)
u (x, y)]x, y ¥ A. L

Similarly, for any m=1,..., M, the correlation functions of Pa (m)v have
the form

rn({xi1 ,..., xin} | P
a (m)
v )=det[K̄

(m)
v (xik , xil )]k, l=1,..., n,

where

K̄ (m)v (x, y)=dxy−K
(m)
v (x, y).

Proposition 4 is a special case of the complementation principle for the
discrete determinantal processes which is due to S. Kerov, see ref. 15,
Section A.3.
Observe that Proposition 2 and Propositions 3 and 4 with similar

statements regarding P (m)
v and Pa (m)v , imply that all the diagonal minors of

the matrix

K (m)u =||K
(m)
u (xi, xj)||i, j=0,..., M
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are equal to the corresponding diagonal minors of the matrix

I−K (M−m+1)v =||dij−K
(M−m+1)
v (xi, xj)||i, j=0,..., M.

In particular, the diagonal entries of these two matrices are equal. Looking
at 2×2 diagonal minors, we then conclude that

K (m)u (x, y)=±K
(M−m+1)
v (x, y)

for all x ] y, x, y ¥X. (Here we used the fact that both matrices are sym-
metric.)
An obvious guess is that the matrices K (m)u and I−K

(M−m+1)
v are con-

jugate, and the conjugation matrix is diagonal with diagonal entries equal
to ±1. This guess turns out to be correct.
Set

D=diag(E(x0), E(x1),..., E(xM)),

where E(x) was defined in Theorem 1.

Theorem 5. Under the above notation, for any m=0, 1,..., M,

K (m)u =D(I−K
(M−m+1)
v ) D,

where the functions u and v satisfy (1).

Proof. The equality of the diagonal entries was discussed above: it is
exactly the equality of the first correlation functions of the processes P (m)

u

and Pa (M−m+1)v , see Propositions 2–4. To prove the equality of the off-
diagonal entries we employ the well-known Christoffel–Darboux formula,
see, e.g., ref. 18, which implies that, for x ] y,

K (m)u (x, y)=`u(x) u(y)
am−1
am pm−1

Pm(x) Pm−1(y)−Pm−1(x) Pm(y)
x−y

,

K (M−m+1)v (x, y)=`v(x) v(y)
bM−m

bM−m+1qM−m

×
QM−m+1(x) QM−m(y)−QM−m(x) QM−m+1(y)

x−y
.

Then Theorem 1 immediately implies that K (m)u (x, y)=−E(x) E(y)×
K (M−m+1)v (x, y), and the proof is complete. L
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3. EXAMPLES

Our main reference for this section is ref. 19. We use it for the notation
and data on the classical orthogonal polynomials considered below.

3.1. Krawtchouk Polynomials

Let X={0, 1,..., N}, and

u(x)=1N
x
2 px(1−p)N−x= N!

x! (N−x)!
px(1−p)N−x, x ¥X, 0 < p < 1.

The polynomials orthogonal with the weight u(x) are called the Krawtchouk
polynomials, see ref. 19, Section 1.10,

Pn(x)=Kn(x; p, N), n=0, 1,..., N.

The leading coefficient an of Pn, the square of the norm pn of Pn, and the
explicit formula for Pn are as follows:

an=1
N
n
2−1 (−1)n
n! pn

, pn=1
N
n
2−1 11−p

p
2n, Pn(x)=2F1 1

−n, −x
−N
: 1
p
2 .

Observe that

D
y=0,..., N
y ] x

(x−y)2=x!2 (N−x)!2, x=0, 1,..., N.

Thus, the dual (according to Theorem 1) weight v(x) has the form

v(x)=(u(x) x!2 (N−x)!2)−1=
1

N!2 (p(1−p))N
1N
x
2(1−p)x pN−x.

We conclude that Qn(x)=const Kn(x; 1−p, N). An easy calculation shows
that the normalization of Theorem 1 implies that

const=(−1)N (1−p)NN!, Qn(x)=(−1)N (1−p)NN! Kn(x; 1−p, N).

Clearly, E(x)=(−1)N−x, and the claim of Theorem 1 takes the form

Kn(x; p, N)=(−1)x 1
1−p
p
2x KN−n(x; 1−p, N), x=0,..., M. (2)
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Of course, this identity can be proved directly using the explicit
formula for the Krawtchouk polynomials above. One just needs to use the
transformation formula

2F1 1
a, b
c
: z2=(1−z)−b 2F1 1

c−a, b
c
: z
z−1
2 .

3.2. Hahn Polynomials

The computation below was shown to me by T. Koornwinder. Let X
be as above, and

u(x)=1a+x
x
21b+N−x

N−x
2 , a, b > −1 or a, b < −N.

If a, b > −1 then u(x) > 0, if a, b < −N then (−1)N u(x) > 0.
The orthogonal polynomials corresponding to this weight are called

the Hahn polynomials, see ref. 19, Section 1.5,

Pn(x)=Hn(x; a, b, N), n=0, 1,..., N.

The data are as follows:

an=
(n+a+b+1)n
(a+1)n (−N)n

, pn=
(−1)n (n+a+b+1)N+1 (b+1)n n!
(2n+a+b+1)(a+1)n (−N)n N!

,

Pn(x)=3F2 1
−n, n+a+b+1, −x

a+1, −N
: 12 .

The dual weight has the form

v(x)=(u(x) x!2 (N−x)!2)−1

=
(−1)N

(a+1)N (b+1)N
1 (−b−N−1)+x

x
21 (−a−N−1)+N−x

N−x
2 .

Thus, Qn(x)=constHn(x;−b−N−1, −a−N−1, N). Computation of the
normalization constant yields

const=(−1)N (b+1)N,

Qn(x)=(−1)N (b+1)NHn(x;−b−N−1, −a−N−1, N).
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The claim of Theorem 1 takes the form

Hn(x; a, b, N)=
(−b−N)x
(a+1)x

HN−n(x;−b−N−1, −a−N−1, N) (3)

for all x=0, 1,..., N.
A direct proof of (3) follows from the transformation formula

3F2 1
a, b, c
d, e
: 12=C(d) C(d+e−a−b−c)

C(d+e−a−b) C(d−c) 3
F2 1

e−a, e−b, c
d+e−a−b, e

: 12 ,

see ref. 20, Section 7.4.4(1) and ref. 21, Section 3.6.
The limit transition a=pt, b=(1−p) t, tQ., see ref. 19, Sec-

tion 2.5.3, brings (3) to (2).
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